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Figure 1. Our model is much more robust to depth error when
trained with depth scale augmentation. In addition, as depth noise
grows, image features are increasingly important to reconstruction
quality.

1. Depth source and noise sensitivity

Fig. 1 explores the effect of test-time depth noise on
reconstruction accuracy for three different trained models.
We apply a random scaling factor to each predicted depth
image, sampled from the normal distribution with standard
deviation σ, observing a decay in F-score as σ increases. In-
terestingly, the falloff is earlier and steeper when our model
is trained either without depth augmentation or without im-
age features. This confirms our intuition that the depth scale
augmentation increases robustness to depth error, and that
the image features are important for recovering from depth
error and disagreement.

Table 1 shows results for our model using different
choices of the depth estimator M . The model is re-trained
for each row. We observe that the choice of depth estima-
tor has a considerable effect on performance. In the future,
co-design of the depth estimator with the depth-guided re-
construction system may yield further improvements.

3D metrics Depth metrics
Depth source Cham ↓ F1 ↑ L1 ↓ δ1.05↑
Ground truth 3.00 91.8 4.15 94.6
SimpleRecon 5.18 75.5 6.91 86.6
DeepVideoMVS 5.86 72.0 8.67 82.4

Table 1. We train and test our model on ScanNet with three differ-
ent depth estimators: Ground truth (structured-light depth sensor
[2]), SimpleRecon [5], and DeepVideoMVS (pair network) [3].

2. Additional ablations
Table 2 shows additional experiments involving varia-

tions of the depth guidance strategy. In row (b) we train with
no depth scale augmentation, showing significantly worse
reconstruction metrics, and confirming that this augmenta-
tion is a critical component of our depth guidance contribu-
tion. In row (c) we use a small MLP θw to predict a scaling
weight w for back-projecting image features:

w = θw(max(min(
zv − d̂v
12cm

, 1),−1)) (1)

where zv is the camera-to-voxel depth of the current voxel,
and d̂v is the predicted depth along the current camera
ray. Surprisingly, this strategy performs worse than using
a weight of w = 1 everywhere as in row (a). In row (d)
we project each image feature only into the voxel at its pre-
dicted depth. This greatly impairs the reconstruction ability,
and we infer that spreading the image features throughout
space helps the 3D CNN to recognize and unify correspond-
ing surfaces that are predicted at inconsistent depths.

3. Additional qualitative results
In Fig. 2 we replicate Fig. 5 from the main text with an

alternate view, to further demonstrate the impact of vary-
ing the output resolution, highlighting the completeness,
smoothness, and detail of our results.

In Fig. 3 we show the reconstruction quality on the 7-
scenes dataset [4], using our ScanNet-trained model with
no fine-tuning. Generalizing to this new data is not trivial,
because the characteristics of 7-Scenes differ from ScanNet
in terms of image noise, typical camera trajectory, rolling



Figure 2. This additional close-up view shows the effect of different output resolutions for three models: VoRTX [6], SimpleRecon [5],
and ours. Increasing the output resolution causes VoRTX to become overly-smooth, and it causes strong artifacts for SimpleRecon. In
contrast, our method is able to smooth out curved surfaces while retaining sharp corners where appropriate, without adding high-frequency
noise. Our best results occur at 1cm resolution, beyond which we see diminishing returns.

3D metrics Depth metrics
Cham ↓ F1 ↑ L1 ↓ δ1.05↑

(a) Ours 5.19 75.4 7.08 86.4
(b) w/o depth aug. 5.49 72.2 7.41 84.4
(c) w/ MLP weight 5.26 74.2 6.96 86.1
(d) w/ direct placement 5.62 71.2 8.06 83.6

Table 2. Our model performs significantly better when trained with
depth augmentation (a) vs without (b). In (c) we use a small MLP
to weight the back-projected image features based on distance to
the predicted depth – most metrics become slightly worse. Row (d)
shows the effect of back-projecting each image feature only into
the voxel at its predicted depth estimate, reducing reconstruction
quality.

shutter artifacts, and focal length. Nonetheless, the visual
reconstruction quality is comparable to our ScanNet results,
indicating reasonable robustness to these factors.

4. 3D CNN architecture details
Figure 4 shows the details of our 3D CNN architecture.

Our main motivating design principle is simplicity, since
our contributions are independent of the particular 3D CNN
architecture.

5. Metrics definitions
The definitions for 3D reconstruction metrics are shown

in Table 3, and the definitions for 2D depth metrics are

Figure 3. Qualitative results on the 7-scenes dataset [4] illustrate
generalization to new data with no fine-tuning.

shown in Table 4. We compute 3D metrics using the proto-
col and code from TransformerFusion [1].

6. CNN feature visualizations

Figure 5 compares four selected feature maps from each
2D CNN feature extractor. The top row features from Ωc are



Accuracy 1
|P |

∑
p∈P minp∗∈P∗ ||p− p∗||2

Compl. 1
|P∗|

∑
p∗∈P∗ minp∈P ||p− p∗||2

Chamf. dist. acc+comp
2

Precision 1
|P |

∑
p∈P 1(minp∗∈P∗ ||p− p∗||2 < 5cm)

Recall 1
|P∗|

∑
p∗∈P∗ 1(minp∈P ||p− p∗||2 < 5cm)

F-score 2
prec−1+rec−1

Table 3. 3D reconstruction metrics. P is a point cloud sam-
pled on the predicted mesh. P ∗ is a point cloud consisting of the
ground-truth mesh vertices. 1 is the indicator function.

L1 1
|PDD∗ |

∑
p∈|PDD∗ | |D(p)−D∗(p)|

AbsRel 1
|PDD∗ |

∑
p∈|PDD∗ |

|D(p)−D∗(p)|
D∗(p)

SqRel 1
|PDD∗ |

∑
p∈|PDD∗ |

|D(p)−D∗(p)|2
D∗(p)

δ1.05
1

|PDD∗ |
∑

p∈|PDD∗ | 1(max( D(p)
D∗(p) ,

D∗(p)
D(p) ) < 1.05)

δ1.25
1

|PDD∗ |
∑

p∈|PDD∗ | 1(max( D(p)
D∗(p) ,

D∗(p)
D(p) ) < 1.25)

Compl. |PD|
|P |

Table 4. 2D depth metrics. P is the set of all pixels. PD is
the subset of pixels with a valid predicted depth, and PD∗ is the
subset of pixels with a valid ground-truth depth. For convenience
we define the intersection PDD∗ = |PD ∩ PD∗ |. D(p) is the
predicted depth at pixel position p, and D∗(p) is the ground-truth
depth at pixel position p.

used as inputs to the 3D CNN to compute the coarse (4cm)
scene structure, and the bottom row features from Ωf are
used in the point back-projection branch to recover fine lo-
cal details. The Ωc outputs are characterized by a speckle
pattern, whereas the Ωf outputs are smoother and preserve
more of the input image texture. Further experiments inves-
tigating these differences and their origins may yield useful
insights for the design of future systems.



Figure 4. The architecture of our 3D CNN Ψ. Light-blue blocks represent 3D feature maps where the first three dimensions are spatial
and the last is the feature dimension. Residual blocks have the form R(x) = σ(x + (B2 ◦ C2 ◦ σ ◦ B1 ◦ C1)(x)) where ◦ represents
function composition, C1 and C2 are 3 × 3 × 3 convolutional layers, B1 and B2 are batch normalization layers, and σ is a leaky ReLU
[7]: σ(x) = max(x, 0.01x).

Figure 5. 2D image features extracted by our model, normalized to [0, 1] for visualization. The features extracted by the two CNNs Ωc

and Ωf are visually distinct, and further examination of these differences may lead to useful insights in the future.
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